
BLENDER: Enabling Local Search with
a Hybrid Differential Privacy Model

Brendan Avent
University of Southern California

Aleksandra Korolova
University of Southern California

David Zeber
Mozilla

Torgeir Hovden
Mozilla

Benjamin Livshits
Imperial College London

Abstract
We propose a hybrid model of differential privacy
that considers a combination of regular and opt-in
users who desire the differential privacy guarantees
of the local privacy model and the trusted curator
model, respectively. We demonstrate that within
this model, it is possible to design a new type of
blended algorithm for the task of privately comput-
ing the most popular records of a web search log.
This blended approach provides significant improve-
ments in the utility of obtained data compared to
related work while providing users with their desired
privacy guarantees. Specifically, on two large search
click data sets comprising 4.8 million and 13.2 mil-
lion unique queries respectively, our approach at-
tains NDCG values exceeding 95% across a range
of commonly used privacy budget values.

1 Introduction

Now more than ever we are confronted with the ten-
sion between collecting mass-scale user data and the
ability to release or share this data in a way that pre-
serves the privacy of individual users. Today, an or-
ganization that needs user data to improve the qual-
ity of service they provide often has no choice but
to perform the data collection themselves. However,
the users may not want to share their data with the
organization, especially if they consider the data to
be sensitive or private. Similarly, the organization
assumes liability by collecting sensitive user data:
private information may be directly leaked through
security breaches or subpoenas, or indirectly leaked
by the output of computations done on the data.
Thus, both organizations and users would benefit
not only from strong, rigorous privacy guarantees
regarding the data collection process, but also from
the organization collecting the minimum amount of
data necessary to achieve their goal. Some of the

philosophy behind our work stems from a desire to
enable privacy-preserving decentralized data collec-
tion that aggregates data from multiple entities into
high quality datasets.

1.1 Differential Privacy and Curator Models

In the last decade, we have witnessed scores of ad-
hoc approaches that have turned out to be inade-
quate for protecting privacy [33, 23]. The problem
stems from the impossibility of foreseeing all attacks
of adversaries capable of utilizing outside knowledge.
Differential privacy [10, 9, 11], which has become
the gold standard privacy guarantee in the academic
literature, and is gaining traction in industry and
government [13, 17, 28], overcomes the prior issues
by focusing on the privatization algorithm applied
to the data, requiring that it preserves privacy in a
mathematically rigorous sense under an assumption
of an omnipotent adversary.

There are two primary models in the differential
privacy framework that define how data is to be han-
dled by the users and data collectors: the trusted
curator model and the local model.

Trusted curator model: Most differentially pri-
vate algorithms developed to date operate in the
trusted curator model: all users’ data is collected
by the curator before privatization techniques are
applied to it. In this model, although users are guar-
anteed that the released data set protects their pri-
vacy, they must be willing to share their private,
unperturbed data with the curator and trust that
the curator properly performs a privacy-preserving
perturbation.

Local model: As was most recently argued by Ap-
ple [17], users may not trust the data collector with
their data, and may prefer privatization to occur be-
fore their data reaches the collector. Since privati-
zation occurs locally, this is known as the local dif-
ferential privacy (LDP) model, or local model. Over

the last several years, we have seen some examples
of the local model beginning to be used for data col-
lection in practice, most notably in the context of
the Chrome web browser [13] and Apple’s data col-
lection [17].

In the LDP model, a data collector such as Google
or Apple obtains insights into the data without ob-
serving the exact values of user’s private data. This
is achieved by applying a privacy-preserving pertur-
bation to each user’s private data before it leaves
the user’s device. Since most people do not trust
web companies with maintaining the privacy and se-
curity of their data [29], the minimal trust required
of users towards the data collector is a very attrac-
tive property of the LDP model. This approach pro-
tects not only the individual users, but also the data
collector from the possible privacy breaches. For
these reasons, the local model directly embodies the
“data minimization”principle described in the White
House’s 2012 consumer data privacy report [41].

Although it may seem counter-intuitive, it is pos-
sible to obtain useful insights even when the data
collector does not have access to the original data
and receives only data that has already been locally
privatized. Suppose a data collector wants to deter-
mine the proportion of the population that is HIV-
positive. The local privatization algorithm works
as follows: each person contributing data secretly
flips a coin. If the coin lands heads, they report
their true HIV status; otherwise, they report a sta-
tus at random. This algorithm, known as random-
ized response [40], guarantees each person plausible
deniability and is differentially private. Since the
randomness is incorporated into the algorithm in a
precisely specified way, the data collector is able to
recover an accurate estimate of the true proportion
of HIV-positive people if enough people contribute
their locally privatized data.

Differential privacy: Formally, an algorithm A
is (ε, δ)-differentially private [11] if and only if for
all neighboring databases D and D′ differing in pre-
cisely one user’s data, the following inequality is sat-
isfied for all possible sets of outputs Y ⊆ Range(A):

Pr[A(D) ∈ Y] ≤ eε Pr[A(D′) ∈ Y] + δ.

The definition of what it means for an algorithm
to preserve differential privacy is the same for both
the trusted curator model and the local model. The
only distinction is in the timing of when the pri-
vacy perturbation needs to be applied – in the lo-
cal model, the data needs to undergo a privacy-
preserving perturbation before it is sent to the ag-
gregator, whereas in the trusted curator model the
aggregator may first collect all the data, and then

apply a privacy-preserving perturbation. The timing
distinction leads to differences in what is meant by
“neighboring databases” in the definition and which
algorithms are analyzed. In the local model, D rep-
resents data of a single user and D′ represents data
of the same user, with possibly changed values. In
the trusted curator model, D represents data of all
users and D′ represents data of all users, except val-
ues of one of the user’s data may be altered.

Current differential privacy literature
considers the trusted curator model
and the local model entirely indepen-
dently. Our goal is to show that there
is much to be gained by combining
the two.

Hybrid model: Much of the contribution in this
paper stems from our observation that the two mod-
els can co-exist. As others have observed [2, 1,
7], people’s attitudes toward privacy vary widely.
Specifically, some users may be comfortable with
sharing their data with a trusted curator.

Many companies rely on a group of beta testers
with whom they have higher levels of mutual trust.
It is not uncommon for such beta testers to vol-
untarily opt-in to a less privacy-preserving model
than that of an average end-user [32]. For exam-
ple, Mozilla warns potential beta users of its Fire-
fox browser that “Pre-release versions automatically
send Telemetry data to Mozilla to help us improve
Firefox1”; Google has a similar provision for the beta
testers of the Canary build of the Chrome browser2.

For the users who have higher trust in the com-
pany — we call them the opt-in group, the trusted
curator privacy model is a natural match. For all
other users — we call them clients, the local pri-
vacy model is appropriate. Our goal is to demon-
strate that by separating the user pool into these
two groups, according to their trust (or lack thereof)
in the data aggregator, we can improve the utility of
the collected data. We dub this new model the hy-
brid differential privacy model.

1.2 Applications

Heavy hitter discovery and estimation is a well-
studied problem in the context of information re-
trieval, and is one of the canonical problems in
privacy-preserving data analysis [6, 27]. Moreover,
recent work in the LDP model is focused on pre-
cisely that problem [13, 34] or very closely related
ones of histogram computations [5, 21]. However,
current privacy-preserving approaches in the LDP
model lead to utility losses that are quite signifi-
cant, sometimes to the point where results are no

longer usable. Clearly, if the privacy-preserving per-
turbation makes the data deviate too far from the
original, the approach will not be widely adopted.
This is especially true in the context of search tasks,
where users have been conditioned for years to ex-
pect high-quality results.

We consider two specific applications in the space
of heavy hitter estimation: local search and search
trend computation.

Local search: Much of the work in this paper is
motivated by local search, an application of heavy
hitter estimation. Local search revolves around the
problem of how a browser maker can collect informa-
tion about users’ clicks as they interact with search
engines in order to create the head of the search, i.e.,
the collection of the most popular queries and their
corresponding URLs, and make it available to users
locally, i.e., on their devices. Specifically, it involves
computing on query-URL pairs, where the URLs are
those clicked as a result of submitting the query and
receiving a set of answers.

A browser maker may choose to combine the re-
sults obtained from user interactions that stem from
several search engines depending on the context or
surface results obtained from Baidu and not Bing
depending on the user’s current geographic location.

With proper privacy measures in place, this data
set can be deployed in the end-user browser to serve
the most common queries with a very low latency
or in situations when the user is disconnected from
the network. Local search can be thought of as a
form of caching, where many queries are answered
in a manner that does not require a round trip to
the server. Such caching of the most frequently used
queries locally has a disproportionately positive im-
pact on the expected query latency [36, 3] as queries
to a search engine follow a power-law distribution [4].
Furthermore, it would not be unusual or require a
significantly novel infrastructure, as plenty of data is
delivered to the browser today, such as SafeBrowsing
malware databases in Chrome and Firefox, Microsoft
SmartScreen data in Internet Explorer, blocking lists
for extensions such as AdBlock Plus, etc.

Trend computation: Search trend computation is
a typical example of heavy hitter estimation. This
problem entails finding the most popular queries and
sorting them in order of popularity; think about it as
the top-10 computation based on local search obser-
vations. An example of this is the Google trends ser-
vice3, which has an always up-to-date list of trending
topics and queries.

Although trend computation is interesting, local
search is a great deal harder to do well on while
preserving most of the utility. Luckily, in the domain

of search quality, there are established metrics to
numerically assess the quality of search results; one
of such metrics is NDCG, and we rely on it heavily in
assessing the performance of our proposed system.

1.3 Contributions

Our paper makes the following contributions:

• We introduce and utilize a more realistic, hy-
brid trust model, which removes the need for
all users to trust a central curator.

• We propose Blender, an algorithm that oper-
ates with the hybrid differential privacy model
for computing heavy hitters. Blender blends
the data of opt-in and all other users in order
to improve the resulting utility.

• We test Blender on two common applications:
search trend computation and local search and
find that it preserves high levels of utility while
maintaining differential privacy for reasonable
privacy parameter values.

• As part of Blender, we propose an approach
for automatically balancing the data obtained
from participation of opt-in users with that of
other users to maximize the eventual utility.

• We perform a comprehensive utility evaluation
of Blender on two large web search data sets,
comprising 4.8 million and 13.2 million queries,
demonstrating that Blender maintains very
high level of utility (i.e., NDCG values in ex-
cess of 95% across a range of parameters).

2 System Overview

We now discuss the high-level overview of our pro-
posed system, Blender, that coordinates the pri-
vatization, collection, and aggregation of data in the
hybrid model, as well as some of the specific choices
we make in this system. We use the task of enabling
local search based on user histories while preserving
differential privacy throughout, but, as will become
clear from the discussion, our model and system can
also be applied to other frequency-based estimation
tasks. As discussed in Section 1, we consider two
groups of users: the opt-in group, who are comfort-
able with privacy as ensured by the trusted curator
model, and the clients, who desire the privacy guar-
antees of the local model.

2.1 Outline of Our Approach

The core of our innovation is to take advantage of
the privatized information obtained from the opt-in
group in order to create a more efficient (in terms
of utility) algorithm for data collection from the

B
le

n
d

er

local search data

trend data

privacy barrier

probability varianceheadlist probability varianceheadlist probability variance

query/url
pairs

privacy barrier privacy barrier

query/url
pairs

query/url
pairs

privacy barrier

query/url
pairs

privacy barrier privacy barrier

query/url
pairs

query/url
pairs

privacy barrier

query/url
pairs

query/url
pairs

query/url
pairs

query/url
pairs

query/url
pairs

query/url
pairs

Figure 1: Architectural diagram of Blender’s processing steps.

clients. Furthermore, the privatized results obtained
from the opt-in group and from the clients are then
“blended” in a way that takes into account the pri-
vatization algorithms used for each group, and thus,
again, achieving an improved utility over a less-
informed combination of data from the two groups.

The problem of enabling privacy-preserving lo-
cal search using past search histories can be viewed
as the task of identifying the most frequent search
records among the population of users, and estimat-
ing their underlying probabilities (both in a differen-
tial privacy-preserving manner). In this context, we
call the data collected from the users search records,
where each search record is a pair of strings of the
form 〈query, URL〉, representing a query that a user
posed followed by the URL that the user subse-
quently clicked. We denote by p〈q,u〉 the true under-
lying probability of the search record 〈q, u〉 in the
population. We assume that our system receives a
sample of users from the population, each holding
their own collection of private data drawn indepen-
dently and identically from the distribution over all
records p. Its goal is to output an estimate p̂ of prob-
abilities of the most frequent search records, while
preserving differential privacy (in the trusted curator
model) for the opt-in users and (in the local model)
for the clients.

Informal Overview of Blender: Figure 1
presents an architectural diagram of Blender.

Blender serves as the trusted curator for the opt-
in group of users, and begins by aggregating data
from them. Using a portion of the data, it con-
structs a candidate head list of records in a differ-

entially private manner that approximates the most
common search records in the population. It addi-
tionally includes a single “wildcard” record, 〈?, ?〉,
which represents all records in the population that
weren’t previously included in the candidate head
list. It then uses the remainder of the opt-in data to
estimate the probability of each record in the candi-
date head list in a differentially private manner, and
(optionally) trims the candidate head list down to
create the final head list. The result of this compo-
nent of Blender is the privatized trimmed head list
of search records and their corresponding probabil-
ity and variance estimates, which can be shared with
each user in the client group, and with the world.

Each member of the client group receives the pri-
vatized head list obtained from the opt-in group.
Each client then uses the head list to apply a differ-
ential privacy-preserving perturbation to their data,
subsequently reporting their perturbed results to
Blender. Blender then aggregates all the clients’
reports and, using a statistical denoising procedure,
estimates both the probability for each record in the
head list as well as the variance of each of the esti-
mated probabilities based on the clients’ data.

For each record, Blender combines the record’s
probability estimates obtained from the two groups.
It does so by taking a convex combination of the
groups’ probability estimates for each record, care-
fully weighted based on the record’s variance esti-
mate in each group. The combined result under
this weighting scheme yields a better probability es-
timate than either group is able to achieve individu-
ally. Finally, Blender outputs the obtained records

and their combined probability estimates, which can
be used to drive local search, determine trends, etc.

A Formal Overview of Blender: Figure 2
presents the precise algorithmic overview of each
step, including key parameters. Lines 1-3 of
Blender describe the treatment of data from opt-in
users, line 4 – the treatment of clients, and line 5 –
the process for combining the probability estimates
obtained from the two groups. The only distinction
between opt-in users and clients in terms of privacy
guarantees provided is the curator model – trusted
curator and local model, respectively. Other than
that, both types of users are assumed to desire the
same level of (ε, δ)-differential privacy.

We will detail our choices for the privatization
sub-algorithms and discuss their privacy proper-
ties next. A key feature of Blender, however,
is that its privacy properties do not depend on
the specific choices of the sub-algorithms. That
is, as long as CreateHeadList, EstimateOptin-
Probabilities, and EstimateClientProbabili-
ties each satisfy (ε, δ)-differential privacy in its re-
spective curator model, then so does Blender. This
allows changing the sub-algorithms if better versions
(utility-wise or implementation-wise) are discovered
in the future. Among the parameters of Blender,
the first four (the privacy parameters and the sets
of opt-in and client users) can be viewed as given
externally, whereas the following five (the number of
records collected from each user and the distribution
of the privacy budget among the sub-algorithms’
sub-components) can be viewed as knobs the de-
signer of Blender is at liberty to tweak in order
to improve the overall utility of Blender’s results.

2.2 Overview of Blender Sub-Algorithms

We now present the specific choices we made for the
sub-algorithms in Blender. Detailed technical dis-
cussions of their properties follow in Section 3.

Algorithms for Head List Creation and Prob-
ability Estimation Based on Opt-in User Data
(Figures 3, 4): The opt-in users are partitioned
into two sets – S, whose data will be used for initial
head list creation, and T , whose data will be used to
estimate the probabilities and variances of records
from the formed initial head list.

The initial head list creation algorithm, described
in Figure 3, constructs the list in a differentially pri-
vate manner using search record data from group S.
The goal of the algorithm is to approximate the true
set of most frequently searched and clicked search
records as closely as possible, while ensuring differ-
ential privacy. The algorithm follows the strategy
introduced in [26] by aggregating the records of the

Blender (ε, δ, O,C,mO,mC , fO, fC ,M)

Parameters:

• ε, δ: the differential privacy parameters.

• O,C: the set of opt-in users and clients, re-
spectively.

• mO,mC : the max number of records to collect
from each opt-in / client user, respectively.

• fO: the fraction of the opt-in users to use in
head list creation (the remainder are used to
estimate the record probabilities).

• fC : the fraction of the clients’ privacy budget
to allocate to queries (as opposed to URLs).

• M : the maximum size of the finalized head list.

Variables:

• HLS , HL: a map from each query to its corre-
sponding set of URLs.

• p̂O, σ̂2
O, p̂C , σ̂

2
C : vectors indexed by records in

HL (and, overloaded to be indexed by queries
in HL as well) containing the probability es-
timates and variance estimates for each record
(and query).

Body
1: Arbitrarily partition O into S and T = O \ S, such

that |S| = fO|O| and |T | = (1− fO)|O|.
2: let HLS = CreateHeadList(ε, δ, S,mO) be the

initial head list of records computed based on opt-in
users’ data.

3: let 〈HL, p̂O, σ̂2
O〉 = EstimateOptinProbabili-

ties(ε, δ, T,mO, HLS ,M) be the refined head list
of records, their estimated probabilities, and esti-
mated variances based on opt-in users’ data.

4: let 〈p̂C , σ̂2
C〉 = EstimateClientProbabili-

ties(ε, δ, C,mC , fC , HL) be the estimated record
probabilities and estimated variances based on
client reports.

5: let p̂ = BlendProbabilities(p̂O, σ̂
2
O, p̂C , σ̂

2
C , HL)

be the combined estimate of record probabilities.
6: return HL, p̂.

Figure 2: Blender, the server algorithm that coordinates the
privatization, collection, and aggregation of data from all users.

opt-in users from S, and including in the head list
those records whose noisy count exceeds a thresh-
old. The noise to add to the true counts and the
threshold to use are calibrated to ensure differential
privacy, using [24].

Our algorithm differs from previous work in two
ways: 1) it replaces the collection and threshold-
ing of queries with the collection and thresholding
of records (i.e., query - URL pairs) and 2) its defi-
nition of neighboring databases is that of databases
differing in values of one user’s records, rather than

CreateHeadList(ε, δ, S,mO)

Parameters:

• ε, δ: the differential privacy parameters.

• S: a set of opt-in users.

• mO: the maximum number of records to collect
from each opt-in user.

Body
1: let N(r,D) = number of times an arbitrary record

r appears in the given dataset D.
2: for each user i ∈ S do
3: let DS,i be the database aggregating at most

mO arbitrary records from i.

4: let DS be the concatenation of all DS,i databases.
5: let HLS be an empty map.
6: bS = 2mO

ε
.

7: τ = bs ·
(
ln(exp(ε

2
) +mO − 1)− ln(δ)

)
.

8: Assert τ ≥ 1.
9: for each distinct 〈q, u〉 ∈ DS do

10: let Y be an independent draw from Lap(bS), i.e.,
Laplace distribution with scale bS centered at 0.

11: if N(〈q, u〉, DS) + Y > τ then
12: Add q to HLS if q 6∈ HLS .
13: Append u to HLS [q].

14: Add 〈?, ?〉 to HLS .
15: return HLS .

Figure 3: Algorithm for creating the head list from a portion
opt-in users in a privacy-preserving way.

in the addition or removal of records of one user.
These necessitate the choice of mO = 1, as well as
higher values for noise and threshold than in [24].

We introduce a wildcard record 〈?, ?〉 to represent
records not included in the head list, for the subse-
quent task of estimating their aggregate probability.

For each record included in the initial head list,
the algorithm described in Figure 4 uses the remain-
ing opt-in users’ data (from set T) to differentially
privately estimate their probabilities, denoted by p̂O.
This algorithm is the standard Laplace mechanism
from the differential privacy literature [10], with
scale of noise calibrated to output sensitivity due to
our definition of neighboring datasets. Our imple-
mentation ensures (ε, 0)-differential privacy, which
is a more stringent privacy guarantee than for any
non-zero δ. We need to set mO = 1 for the pri-
vacy guarantees to hold, because we treat data at
the search record rather than query level.

We form the final head list from the M most
frequent records in p̂O. Finally, the head list is
passed to the client group, and the head list and
its probability and variance estimates are passed to
the BlendProbabilities step of Blender.

The choice of how to split opt-in users into the
sub-groups of S and T and the choice of M are un-

EstimateOptinProbabilities(ε, δ, T,mO, HLS ,M)

Parameters:

• ε, δ: the differential privacy parameters. In
fact, this algorithm achieves (ε, 0)-differential
privacy, which is a stricter privacy guarantee
than (ε, δ)-differential privacy, for all δ > 0.

• T : a set of opt-in users.

• mO: the maximum number of records to collect
from each opt-in user.

• HLS : the initial head list of records whose
probabilities are to be estimated.

• M : the maximum size of the finalized head list.

Body
1: let N(r,D) = number of times an arbitrary record

r appears in the given dataset D.
2: for each user i ∈ T do
3: let DT,i be the database aggregating at most

mO arbitrary records from i.

4: let DT be the concatenation of all DT,i databases.
5: Transform any record 〈q, u〉 ∈ DT that doesn’t ap-

pear in HLS into 〈?, ?〉.
6: let p̂O be a vector indexed by records in HLS con-

taining the respective probability estimates.
7: let σ̂2

O be a vector indexed by records in HLS con-
taining variance estimates of the respective proba-
bility estimate.

8: Denote |DT | as the total number of records in DT .

9: let bT = 2mO
ε

.
10: for each 〈q, u〉 ∈ HLS do
11: let Y be an independent draw from Lap(bT).
12: p̂O,〈q,u〉 = 1

|DT |
(N(〈q, u〉, DT) + Y).

13: σ̂2
O,〈q,u〉 =

p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT |−1
+

2b2T
|DT |·(|DT |−1)

.

14: let HL map the M queries with the highest esti-
mated marginal probabilities (according to p̂O) to
their respective sets of URLs.

15: For the records not retained in HL, accumulate
their estimated probabilities into p̂O,〈?,?〉 and up-

date σ̂2
O,〈?,?〉 as in line 13.

16: return HL, p̂O, σ̂
2
O.

Figure 4: Algorithm for privacy-preserving estimation of prob-
abilities of records in the head list from a portion of opt-in users.

related to privacy constraints, and can be made by
Blender’s developer to optimize utility goals, as
will be discussed in Section 4.2.1.

The technical discussions of the algorithms’ pri-
vacy properties and variance estimate computations
follow in Section 3.1 and Section 3.3.

Algorithms for client data collection (Fig-
ures 5, 6): For privatization of client data, the
records are no longer treated as a single entity, but
rather in a two-stage process: first privatizing the
query, then privatizing the URL. This choice is in-
tended to benefit utility as the number of queries is

EstimateClientProbabilities(ε, δ, C,mC , fC , HL)

Parameters:

• ε, δ: the differential privacy parameters.

• C: the set of clients.

• mC : the number of records to collect from the
client.

• fC : the fraction of the privacy budget to allo-
cate to reporting queries.

• HL: a map from each query to its correspond-
ing set of URLs.

Body
1: Append query q = ? to HL.
2: for each query q ∈ HL do
3: Append URL u = ? to HL[q].

4: for each client i ∈ C do
5: let DC,i = LocalAlg(ε, δ,mC , fC , HL) be the

reports from i’s local execution of LocalAlg.

6: let DC be the concatenation of all reported client
datasets, DC,i.

7: Denote |DC | as the total number of records in DC .
8: let variables ε′Q, ε

′
U , δ
′
Q, δ
′
U , k, t, kq , tq(∀q ∈ HL) be

defined as in lines 2–4 of LocalAlg.
9: let r̂C , p̂C , σ̂

2
C be vectors indexed by records in HL

(and overloading its use, also indexed by queries).
10: for q ∈ HL do
11: let r̂C,q be the fraction of queries q in DC .

12: p̂C,q =
r̂C,q−

1−t
k−1

t− 1−t
k−1

13: σ̂2
C,q = 1(

t− 1−t
k−1

)2 r̂C,q(1−r̂C,q)

|DC |−1

14: for u ∈ HL[q] do
15: let r̂C,〈q,u〉 be the fraction of records which

are 〈q, u〉 in DC .

16: p̂C,〈q,u〉 =
r̂C,〈q,u〉−

(1−tq)tp̂C,q
kq−1

−
(1−t)(1−p̂C,q)

(k−1)kq

t(tq−
1−tq
kq−1

)

17: σ̂2
C,〈q,u〉 =

(
r̂C,〈q,u〉(1−r̂C,〈q,u〉)

|DC |−1
+

2|DC |
|DC |−1

(
1−t

(k−1)kq
− t−ttq

kq−1

)(
k−2+t
kt−1

)
r̂C,〈q,u〉+(

1−t
(k−1)kq

− t−ttq
kq−1

)2
σ̂2
C,q

)
· 1

t2
(
tq−

1−tq
kq−1

)2
18: return p̂C , σ̂

2
C .

Figure 5: Algorithm for estimating probabilities of records in the
head list from the locally privatized reports of the client users.

significantly larger than the number of URLs asso-
ciated with any query, and hence allocating a larger
portion of the privacy budget to the query-reporting
stage is a prudent choice.

The process of local privatization of each client’s
value (Figure 6) follows the strategy of the Exponen-
tial mechanism introduced by [30]. The privatiza-
tion algorithm reports the true value with a certain
bounded probability, and otherwise, randomizes the
answer uniformly among all the other feasible values.

The fact that the head list (approximating the set

LocalAlg(ε, δ,mC , fC , HL)

Parameters:

• ε, δ: the differential privacy parameters.

• mC : the number of records to collect from the
client.

• fC : the fraction of the privacy budget to allo-
cate to reporting queries.

• HL: the head list, represented as a map keyed
by queries {q1, . . . , qk, ?}. The value for each
q ∈ HL is defined as HL[q] = {u1, . . . , ul, ?},
representing all URLs in the head list associ-
ated with q.

Body
1: let DC,i be the database aggregating at most mC

records from current client i.
2: ε′ = ε/mC , and δ′ = δ/mC .
3: ε′Q = fCε

′, ε′U = ε′ − ε′Q and δ′Q = fCδ
′, δ′U =

δ′ − δ′Q.

4: k = |HL|, and t =
exp(ε′Q)+(δ′Q/2)(k−1)

exp(ε′
Q
)+k−1

.

5: for each q ∈ HL do:

6: kq = |HL[q]|, and tq =
exp(ε′U)+(δ′U/2)(kq−1)

exp(ε′
U
)+kq−1

.

7: for each 〈q, u〉 ∈ DC,i do
8: if q 6∈ HL then
9: Set q = ?.

10: if u 6∈ HL[q] then
11: Set u = ?.
12: With probability (1− t),
13: let q′ be a unif. random query from HL \ q.
14: let u′ be a unif. random URL from HL[q′].
15: report 〈q′, u′〉.
16: continue
17: With probability (1− tq),
18: let u′ be a unif. random URL from HL[q]\u.
19: report 〈q, u′〉.
20: continue
21: report 〈q, u〉.

Figure 6: Algorithm executed by each client for privately re-
porting their records.

of the most frequent records) is available to each
client plays a crucial role in improving the utility
of the data produced by this privatization algorithm
compared to the previously known algorithms oper-
ating in the local privacy model. Knowledge of the
head list allows dedicating the entire privacy budget
to report the true value, rather than having to allo-
cate some of it for estimating an analogue of the head
list, as done in [15, 34]. Another distinction from the
Exponential mechanism designed to improve utility
is utilization of δ.

The choices of mC and fC are not related to pri-
vacy constraints, and can be made by Blender’s
developer to optimize utility goals, as will be dis-

cussed in Section 4.2.1.

The local nature of the privatization algorith, i.e.,
the use of a randomization procedure that can re-
port any record with some probability, induces a pre-
dictable bias to the distribution of reported records.
The removal of this bias, which we refer to as denois-
ing (discussed further in Section 3.2), results in the
proper probability estimates p̂C (Figure 5). These
probability estimates along with the variance esti-
mates are then passed to the BlendProbabilities
part of Blender.

The technical discussion of the algorithm’s privacy
properties, the denoising procedure and variance es-
timate computations follow in Sections 3.2 and 3.3.

Algorithm for Blending (Figure 7): The blend-
ing portion of Blender combines the estimates pro-
duced by the opt-in and client probability-estimation
algorithms by taking into account the sizes of the
groups and the amount of noise each sub-algorithm
added. This produces a blended probability esti-
mate p̂ which, in expectation, is more accurate than
either group produced individually. The procedure
for blending is not subject to privacy constraints, as
it operates on the data whose privacy has already
been ensured by previous steps of Blender. The
motivation and technical discussion of blending fol-
lows in Section 3.3.

BlendProbabilities(p̂O, σ̂
2
O, p̂C , σ̂

2
C , HL)

Parameters:

• p̂O, p̂C : the probability estimates from the opt-in
and client algorithms.

• σ̂O, σ̂C : the variance estimates from the opt-in and
client algorithms.

• HL: the head list of records.

Body
1: let p̂ be a vector indexed by records in HL.
2: for 〈q, u〉 ∈ HL do

3: w〈q,u〉 =
σ̂2
C,〈q,u〉

σ̂2
O,〈q,u〉+σ̂

2
C,〈q,u〉

.

4: p̂〈q,u〉 = w〈q,u〉 · p̂O,〈q,u〉+(1−w〈q,u〉) · p̂C,〈q,u〉.
5: Optional: Project p̂ onto probability simplex (e.g.,

see [39]).
6: return p̂.

Figure 7: Algorithm for combining record probability estimates
from opt-in and client estimates.

3 Technical Detail Summary

We now present further technical details related
to the instantiations of the sub-algorithms for

Blender, such as statements of privacy properties
and the motivation for BlendProbabilities.

3.1 Opt-in Data Algorithms

Differential privacy of the algorithms handling opt-
in client data follows directly from previous work.

Theorem 1. ([24]) CreateHeadList guarantees
(ε, δ)-differential privacy if mO = 1, ε > ln(2), and
τ ≥ 1.

Theorem 2. ([10]) EstimateOptinProbabili-
ties guarantees (ε, 0)-differential privacy if mO = 1.

3.2 Client Data Algorithms

LocalAlg is responsible for the privacy-preserving
perturbation of each client’s data before it gets sent
to the server, and EstimateClientProbabilities
is responsible for aggregating the received privatized
data into a meaningful statistic. We present the
privacy statement and explain the logic behind the
aggregation procedure next and prove them in Ap-
pendix A.

Theorem 3. LocalAlg is (ε, δ)-differentially pri-
vate.

Denoising: The reports aggregated by the client
mechanism form an empirical distribution over the
records (and queries). Relative to the true under-
lying record distribution, this distribution is biased
in an explicit and publicly-known way, as described
by the reporting process. Thus, we seek to obtain
an unbiased estimate of the true record distribution
from this reported distribution. Concretely, we re-
fer to this as denoising the reported empirical dis-
tribution r̂C to obtain the final estimate from the
client algorithm, p̂C . The denoising procedure relies
only on the publicly-known reporting process as well
as the already-privatized reports. Thus, this can be
considered a post-processing step, which has no nega-
tive impact on the differential privacy guarantee [11]
yet significantly improves utility.

Observation 1. p̂C gives the unbiased estimate
of record and query probabilities under Estimate-
ClientProbabilities.

3.3 Blending

The opt-in algorithm and the client algorithm both
output independent estimates p̂O and p̂C of the
record distribution p. The question we address now
is how to best combine these estimates using the in-
formation available.

A standard way to measure the quality of an esti-
mate is by its variance. Although it may seem natu-
ral to choose the estimate with lower variance as the

final estimate p̂, it is possible to achieve a better esti-
mate by jointly utilizing the information provided by
both algorithms. This is because the errors in these
algorithms’ estimates come from different, indepen-
dent sources. The error in the estimates obtained
from the opt-in algorithm is due to the addition of
noise, whereas the error in the estimates obtained
from the client algorithm is due to randomization of
the reports over the set of records in the head list.
Thus, if we determine the variances of the estimates
obtained from the two algorithms, we can use these
variances to blend the estimates in the best way.

More formally, for each record 〈q, u〉 let σ2
O,〈q,u〉

and σ2
C,〈q,u〉 be the variances of the opt-in and client

algorithm’s estimates of p̂O,〈q,u〉 and p̂C,〈q,u〉 respec-
tively. Since these variances depend on the underly-
ing distribution, which is unknown a priori, we will
compute sample variances σ̂2

O,〈q,u〉 and σ̂2
O,〈q,u〉 in-

stead. For each record 〈q, u〉, we will weigh the esti-
mate from the opt-algorithm by w〈q,u〉 and the esti-
mate from the client algorithm by (1−w〈q,u〉), where
w〈q,u〉 is defined as in line 3 of BlendProbabili-
ties. The optional step of projecting the blended
estimates (e.g., as in [39]) ensures that the estimates
sum to 1 and are non-negative.

Theorem 4 presents our computation of the sam-
ple variance of EstimateOptinProbabilities,
Theorem 5 presents our computation of the sample
variance of EstimateClientProbabilities, and
Theorem 6 motivates the weighting scheme used in
BlendProbabilities. Their proofs are presented
in Appendix B.

For the variance derivations, we make an explicit
assumption that each piece of reported data is drawn
independently and identically from the same under-
lying distribution. This is reasonable when compar-
ing data across users. By setting mO = mC = 1,
we remove the need to assume iid data within each
user’s own data, while simplifying our variance com-
putations. We show in Section 4 that Blender
achieves high utility even when mO = mC = 1.

Theorem 4. When mO = 1 the unbi-
ased variance estimate for EstimateOpt-
inProbabilities can be computed as:

σ̂2
O,〈q,u〉 =

|DT |
|DT |−1

(
p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT |
+ 2

(
bT
|DT |

)2)
.

Theorem 5. When mC = 1 the un-
biased variance estimate for Estimate-
ClientProbabilities can be computed as:
σ̂2
C,〈q,u〉 = 1

t2
(
tq−

1−tq
kq−1

)2 ·(r̂C,〈q,u〉(1−r̂C,〈q,u〉)

|DC |−1
+
(

1−t
(k−1)kq

−

t−ttq
kq−1

)2
σ̂2
C,q +

2|DC |
|DC |−1

(
1−t

(k−1)kq
− t−ttq

kq−1

)(
k−2+t
kt−1

)
r̂C,〈q,u〉

)
.

Theorem 6 (Sample Variance Optimal Weight-
ing). If σ̂2

O,〈q,u〉 and σ̂2
C,〈q,u〉 are sample vari-

ances of p̂O,〈q,u〉 and p̂C,〈q,u〉 respectively, then

w〈q,u〉 =
σ̂2
C,〈q,u〉

σ̂2
O,〈q,u〉+σ̂

2
C,〈q,u〉

is the sample variance op-

timal weighting.

4 Experimental Evaluation

We designed Blender with an eye toward preserv-
ing the utility of the eventual results in the two appli-
cations we explore in this paper: trend computation
and local search, as described in Section 1.2. We
use two established domain-specific utility metrics
to assess the utility, the L1 metric and NDCG.

L1: L1 is the Manhattan distance between the esti-
mate and actual probability vectors, in other words,
L1 =

∑
i |p̂i − pi|. The smaller the L1, the better.

NDCG: NDCG is a standard measure of search
quality [20, 38] that explicitly takes the ordering of
the items in a results list into account. This mea-
sure uses a relevance score for each item: given a
list of items and their true frequencies, we define
the relevance or gain of the ith most frequent item
as rel i = ni∑

j nj
, where nj is the number of oc-

currences of the jth most frequent item. The dis-
counted cumulative gain for the top k items in an
estimated list (that is, a list that estimates the top
k items and their frequencies) is typically computed

as DCGk =
∑k
i=1

2reli−1
log2(i+1) . Here, the log2(i + 1)

factor diminishes the contribution of items later in
the list, hence the notion of discounting. In particu-
lar, getting the ordering correct for higher-relevance
items early in the list yields a higher DCGk value.

The magnitude of the DCGk value doesn’t mean
much on its own. For better interpretability, it is
usually normalized by the Ideal DCG (IDCGk),
which is the DCGk value if the estimated list
had the exact same ordering as the actual list.
Thus, the normalized discounted cumulative gain
(NDCGk), which ranges between 0 and 1, is defined
as NDCGk = DCGk/IDCGk.

While NDCG is traditionally defined for lists,
Blender outputs a list-of-lists: there is a URL list
corresponding to each query, and the queries them-
selves form a list. Thus, we introduce a general-
ization of the traditional NDCG measure. Specifi-
cally, for each query q, we first compute the NDCG
as described above of q’s URL list, NDCGqk. We

then define the DCG of the query list as DCGQk =∑k
i=1

2reli−1
log2(i+1) ·NDCG

i
k. This is analogous to the

typical DCG computation, except that each query’s
contribution is being further discounted by how well

AOL Yandex

Data set on disk 1.75 GB 16 GB
Unique queries 4,811,646 13,171,961
Unique clients 519,371 4,970,073
Unique URLs 1,620,064 12,702,350

Figure 8: Data set statistics.

its URL list was estimated. The DCG value for the
query list as a whole is then normalized by the anal-
ogous Ideal DCG (IDCGQk) – the DCGQk if the esti-
mated query list had the exact same ordering as the
actual query list.

Compared to the traditional NDCG definition,
the additional discounting within DCGQk makes it
even harder to attain high NDCG values than in
the query-only case. Contrasted with the L1 mea-
sure, this formulation takes both the ranking and
probabilities from the data set into account. Since
changes to the probabilities may not result in rank-
ing changes, L1 is an even less forgiving measure
than NDCG.

Since the purpose of Blender is to estimate prob-
abilities of the top records, we discard the artificially
added ? queries and URLs and rescale reli prior to
L1 and NDCG computations. However, since we
use the method of [39] in BlendProbabilities, the
probability estimates involving ? have a minor im-
plicit effect on the L1 and NDCG scores.

4.1 Experimental Setup

Data sets: For our experiments, we use the
AOL search logs, first released in 2006 and an or-
der of magnitude bigger Yandex search data set4,
from 2013. Figure 8 compares their characteristics.

Data analysis: To familiarize the reader with the
approach we used for assessing result quality, Fig-
ure 9 shows the top-10 most frequent queries in the
AOL data set, with the estimates given by the dif-
ferent “ingredients” of Blender.

The table is sorted by column 2, which contains
the non-private, empirical probabilities pq for each
query q from the AOL data set with 1 random record
sampled from each user. We consider this as the
baseline for the true, underlying probability of that
query. Column 3 contains the final query probability
estimates outputted by Blender, p̂q, after combin-
ing the estimates from the opt-in group and clients.
The remaining columns show the estimates that are
produced by the sub-components of Blender that
are eventually combined to form the estimates in
column 3. As the opt-in and client sub-components
compute probability estimates over the records in
the head list, we obtain query probability estimates
by aggregating the probabilities associated with each

AOL data Blender Opt-in Client Client

Query prob. estimate estimate estimate estimate

pq p̂q
∑

u p̂O,〈q,u〉 p̂C,q
∑

u p̂C,〈q,u〉

? 0.9108 0.9103 0.9199 0.9100 0.1468

google 0.0213 0.0216 0.0213 0.0217 0.0216

yahoo 0.0067 0.0070 0.0046 0.0073 0.0325

google.com 0.0067 0.0056 0.0023 0.0061 0.0194

myspace.com 0.0057 0.0052 0.0022 0.0057 0.0258

mapquest 0.0054 0.0051 0.0062 0.0053 0.0192

yahoo.com 0.0043 0.0043 0.0021 0.0048 0.0192

www.google.com 0.0034 0.0004 0.0004 0.0032 0.0098

myspace 0.0033 0.0034 0.0042 0.0035 0.0255

ebay 0.0028 0.0026 0.0028 0.0028 0.0254

Figure 9: Top-10 most popular queries in the AOL dataset, their
empirical probabilities pq in the first numeric column, Blender’s
probability estimates p̂q in the next column, and the various
sub-components’ estimates in the remaining columns. Parame-
ter choices are shown in Figure 10.

URL for a given query (columns 4 and 6). The sam-
ple variance of these aggregated probabilities, used
for blending, is naively computed as in Theorem 4.
In addition to estimating the record probabilities,
the client algorithm estimates query probabilities di-
rectly, which are shown in column 5. Regressions,
i.e., estimates that appear out of order relative to
column 2, are shown in red.

Takeaways: The biggest takeaway is that the num-
bers in columns 2 and 3 are similar to each other,
with only one regression after Blender’s usage.
Blender compensates for the weaknesses of both
the opt-in and the client estimates. Despite the sub-
components having several regressions, their combi-
nation has only one.

The table also provides intuition for the usefulness
of a two-stage reporting process in the client algo-
rithm (first report a query and then the URL), thus
allowing for separate estimates of query and record
probabilities. Specifically, despite the high number
of regressions for the client algorithm’s aggregated
record probability estimates (column 6), its query
probability estimates (column 5) have only one.

4.2 Experimental Results

We formulate questions for our evaluation as fol-
lows: how to choose Blender’s parameters (Sec-
tion 4.2.1), how does Blender perform compared
to alternatives (Section 4.2.2), and how robust are
our findings (Section 4.2.3)?

4.2.1 Algorithmic and Parameter Choices

Blender has a handful of parameters, some of
which can be viewed as given externally (by the laws
of nature, so to speak), and others whose choice is
purely up to the entity that’s utilizing Blender.
We now describe and, whenever possible, motivate,
our choices for these.

Privacy parameters, ε and δ: Academic liter-
ature on differential privacy views the selection of
the ε parameter as a “social question” [9] and thus

uses ε in the range of 0.01 to 10 for evaluating al-
gorithm performance (see Table 1 in [18]). The two
known industry deployments of differential privacy
(by Google [13] and Apple [17]) do not explicitly re-
veal the parameters used. [25, 37] found via reverse-
engineering of Apple’s differential privacy implemen-
tation that Apple uses ε = 1 or ε = 2 per item sub-
mitted, but allows submission of several dozen items
per day from one device. A typical user might ex-
perience an ε of 4 – 6 per day, but ε = 20 per day
has also been observed [37]. The work most simi-
lar to ours, [34], performs evaluations using ε in the
range [1, 10]. We use ε = 4, unless otherwise stated.
Similarly, a range of δs has been used for evaluations
(e.g., 10−6, 10−5, 10−4 in [26] and 0.05 in [6]). We
use δ = 10−5 for AOL and δ = 10−7 for Yandex
data sets, with the smaller δ choice for the latter
reflecting the larger number of users in the data set.

We use the same ε and δ values for the opt-in
and client users. From a behavioral perspective, this
reduces a user’s opt-in decision down to one purely
of trust towards the curator.

Opt-in and client group sizes, |O| and |C|: The
relative sizes of opt-in group and client group, |O|
and |C|, respectively, can be viewed as exogenous
variables which are dictated by the trust that users
place in the search engine. We choose 5% and 2.5%
for the fraction of opt-in users as compared to total
users as these seem reasonable for representing the
fraction of“early adopters”who are willing to supply
their data for the improvement of products and allow
us to demonstrate the utility benefits of algorithms
designed to operate in the hybrid privacy model.

The number of records to collect from each
opt-in user, mO = 1: This is mandated by the pri-
vacy constraints of CreateHeadList algorithm. If
mO > 1 is desired, one should modify the algorithm.

Remaining parameter choices (mC , fC , fO,M) are
driven purely by utility considerations.

The number of records to collect from each
client, mC = 1: Across a range of experimental val-
ues, collecting 1 record per user always yielded great-
est utility, motivating this parameter choice. Apple
makes an analogous choice in their implementation
– they (temporarily) store all relevant items on a
client’s device, and then choose 1 item of each type
to transmit at random each day [37].

How to split the privacy budget between
query and url reporting for clients, fC = 0.85:
Figure 11 shows the effects of the budget split on
both the L1 and NDCG metrics. Unsurprisingly,
Figure 11a shows that the larger the fraction of
client algorithm’s budget dedicated to query estima-

tion as opposed to URL estimation, the better the
L1 score for the client and Blender results. The
NDCG metric in Figure 11b shows a trade-off that
emerges as we assign more budget to the queries,
de-emphasizing the URLs; before and after 0.85, we
start seeing a drop in NDCG values for the client
algorithm. The orange opt-in line in Figure 11b is
constant, as the opt-in group is not affected by the
budget split. Somewhat surprisingly with this pa-
rameter setting, the NDCG for Blender result is
also consistently high (nearly equal to and hidden
by the opt-in line) and is unaffected by the budget
split, unlike the L1 metric.

What fraction of opt-in data to use for cre-
ating the headlist, fO = 0.95: Our goal is to
build a large candidate head list, and unless we al-
locate most of the opt-in user data to building such
a head list (algorithm CreateHeadList), our sub-
sequent results may be accurate but apply only to
a small number of records. Since our opt-in group’s
size is small relative to our client group size, and it
is difficult to generate a head list in the local pri-
vacy model – it makes sense to utilize most of the
opt-in group’s data for the task that is most difficult
in the local model. Through experiment we observe
that increasing fO past 95% gives diminishing re-
turns for increasing the head list size; on the other
hand, there is a significant utility gain (NDCG and
L1) from the use of a small fraction of opt-in users
for estimating probabilities of the head list. Thus,
rather than using the entire opt-in group for head
list generation (i.e., fO = 1), we reserve 5% of the
opt-in data for probability estimation.

What should be the final size of the set for
which we provide probability estimates, M :
The choice of M is influenced by competing con-
siderations. The larger the head list for which we
provide the probability estimates, the more effective
the local search application (subject to those proba-
bility estimates being accurate). However, as desired
head list size increases, the accuracy of our estimates
drops (most notably due to client data privatiza-
tion). We want to strike a balance that allows us
to get a sensibly large record set with reasonably ac-
curate probability estimates it. We choose M = 50
and M = 500 for the AOL and Yandex datasets, to
reflect their differing sizes.

Subsequently, we use the parameters shown in Fig-
ure 10 unless explicitly stated.

4.2.2 Utility Comparison to Alternatives

The closest related work is a recent paper by
Qin et al. [34] for heavy hitter estimation with local
differential privacy, in which they provide a utility

Parameter AOL Yandex
ε 4 4

δ 10−5 10−7

|O|
|O|+|C| 5% 2.5%

mO 1 1
mC 1 1
fO 0.95 0.95
fC 0.85 0.85
M 50 500

Figure 10: Experimental parameters.

evaluation of their algorithm on the AOL data set
for the head list size of 10. We perform a direct
comparison of their NDCG results with Blender’s
across ε values in the range of 1–5, which we plot
in Figure 12. Across the entire range of the pri-
vacy parameter, our NDCG values are above 95%,
whereas the reported NDCG values for Qin et al. are
in the 30% range, at best. We believe that given the
intense focus on search optimization in the field of
information retrieval, NDCG values as low as those
of Qin et al. are generally unusable, especially for
such a small head list size. Overall, Blender signif-
icantly outperforms what we believe to be the closest
related research project.

A caveat to these findings is that Qin et al. [34]
and this work use slightly different scoring func-
tions. The former’s relevance score is based on the
rank of queries in the original AOL data set, which
results in penalizing mis-ranked queries regardless
of how similar their underlying probabilities may
be. Blender’s relevance score relies on the under-
lying probabilities, so mis-ranked items with simi-
lar underlying probabilities have only a small nega-
tive impact on the overall NDCG score; we believe
this choice is justified. Although it yields increased
NDCG scores, Blender operates on records (rather
than queries, as Qin et al. does). Because of this, the
generalized NDCG score used to evaluate Blender
(Section 4) is a strictly less forgiving metric than
the traditional NDCG score. Thus, although simul-
taneously compensating for both differences would
yield the ideal comparison, the one in Figure 12 is
reasonable.

4.2.3 Robustness

We now discuss how the size of the opt-in group and
the choice of ε affect Blender’s utility.

Evaluation of trend computation: Figure 13
shows the L1 values as a function of the opt-in per-
centage ranging between 1% and 10%. We see slight
differences in the two data sets and across the var-
ious head list sizes. Some of the differences might
be due to the fact that given the relatively small
size of the AOL data set, we need to consider higher
opt-in percentages to get reasonably sized head lists

0

0.01

0.02

0.03

0.04

0.05

0.55 0.65 0.75 0.85 0.95

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

Client budget split fraction

Blended Client Opt-in

(a) L1

0.85, 0.694406752

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.55 0.65 0.75 0.85 0.95
N

D
C

G
Client budget split fraction

Blended Client Opt-in

(b) NDCG

Figure 11: Comparing AOL data set results across a range of
budget splits for client, opt-in, and blended results.

0.962 0.971 0.971 0.973 0.975

0.175

0.295 0.315
0.360

0.385

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

N
D
C
G

epsilon

Blender CCS'16

Figure 12: Comparing to the results in the CCS’16 paper by
Qin et al. across a range of ε values; head list size=10.

and L1 values. In fact, when we increase the opt-
in percentage to 10% for the AOL data set, we see
a decline in L1 values similar to what is observed
in Figure 13b for the Yandex data set. If our goal
is to have head lists of 500+, we see that with the
larger Yandex data set, an opt-in percentage as small
as 2.5% is sufficient to achieve high utility. On the
other hand, portions of lines do not appear on figures
if the desired head list size was not reached; e.g., in
Figure 13a, the line for a head list of size 50 does
not begin until 4.5% because that size head list was
not created with a smaller opt-in percentage.

0

0.01

0.02

0.03

0.04

0.05

1
.0

0
%

1
.5

0
%

2
.0

0
%

2
.5

0
%

3
.0

0
%

3
.5

0
%

4
.0

0
%

4
.5

0
%

5
.0

0
%

5
.5

0
%

6
.0

0
%

6
.5

0
%

7
.0

0
%

7
.5

0
%

8
.0

0%

8
.5

0
%

9
.0

0%

9
.5

0
%

1
0

.0
0

%

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

Percentage of users that opt-in

10 25 50

(a) AOL

0

0.02

0.04

0.06

0.08

0.1

0.12

1
.0

0
%

1
.5

0
%

2
.0

0
%

2
.5

0
%

3
.0

0
%

3
.5

0
%

4
.0

0
%

4
.5

0
%

5
.0

0
%

5
.5

0
%

6
.0

0
%

6
.5

0
%

7
.0

0
%

7
.5

0
%

8
.0

0
%

8
.5

0
%

9
.0

0
%

9
.5

0
%

1
0

.0
0

%

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

Percentage of users that opt-in

10 25 50 100 500

(b) Yandex

Figure 13: L1 statistics as a function of the opt-in percentage
for select head list sizes.

Figure 15 shows the L1 values as a function of ε,
ranging from 1 to 5. For both data sets, we see a
steady decline in the L1 metric, despite aggregating
L1 values over longer estimate vectors. With more
data in the Yandex data set, we are able to hit small
values of L1 (under 0.1) with ε ≥ 1. Similar to the
case with small opt-in percentages, having too small
an ε makes it difficult to achieve head lists of their
target size; e.g., in Figure 15a, the line for a head
list of size 50 does not begin until ε = 3 because that
size head list was not created with a smaller ε value.

Evaluation of local search computation: Fig-
ure 14 shows the NDCG measurements as a func-
tion of the opt-in percentage ranging between 1%
and 10%. The results are quite encouraging; for the
smaller AOL data set, for instance, we need to have
an opt-in level of ≈5% to achieve an NDCG level
of 95%, which we regard as acceptable. However, for
the larger Yandex data set, we hit that NDCG level
even sooner: the NDCG value for 1.5% is above 95%
for all but the largest head list size.

Figure 16 shows how the NDCG values vary across
the two data sets for a range of head list sizes and

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1
.0

0
%

1
.5

0
%

2
.0

0
%

2
.5

0
%

3
.0

0
%

3
.5

0
%

4
.0

0
%

4
.5

0
%

5
.0

0
%

5
.5

0
%

6
.0

0
%

6
.5

0
%

7
.0

0
%

7
.5

0
%

8
.0

0
%

8
.5

0
%

9
.0

0
%

9
.5

0
%

1
0.

00
%

N
D

C
G

Percentage of users that opt-in

10 25 50

(a) AOL

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1
.0

0%

1
.5

0%

2
.0

0%

2
.5

0%

3
.0

0%

3
.5

0
%

4
.0

0
%

4
.5

0%

5
.0

0%

5
.5

0%

6
.0

0%

6
.5

0%

7
.0

0%

7
.5

0%

8
.0

0%

8
.5

0
%

9
.0

0
%

9
.5

0%

1
0

.0
0

%

N
D

C
G

Percentage of users that opt-in

10 25 50 100 500

(b) Yandex

Figure 14: NDCG statistics as a function of the opt-in percent-
age for select head list sizes.

ε values. We see a clear trend toward higher NDCG
values for Yandex, which is not surprising given the
sheer volume of data. For the Yandex data set, we
can keep ε as low as 1 and still achieve NDCG values
of 95% and above for all but the two largest head
list sizes. For those, we must increase ε in order to
generate larger head lists from the opt-in users.

5 Related Work

Algorithms for the trusted curator model:
Researchers have developed numerous differentially
private algorithms operating in the trusted curator
model that result in useful data for a variety of ap-
plications. For example, [24, 26, 16, 31] address the
problem of publishing a subset of the data contained
in a search log with differential privacy guarantees;
[27] and [6] propose approaches for frequent item
identification; [14] propose an approach for monitor-
ing aggregated web browsing activities; and so on.

Algorithms for the local model: Although the
demand for privacy-preserving algorithms operating
in the local model has increased in recent years, par-

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1 2 3 4 5

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

epsilon

10 25 50

(a) AOL

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

epsilon

10 25 50 100 500

(b) Yandex

Figure 15: L1 statistics for AOL and Yandex data sets as a
function of ε for select head list sizes.

ticularly among practitioners [17, 35], fewer such al-
gorithms are known [40, 19, 8, 13, 5]. Furthermore,
the utility of the resulting data obtained through
these algorithms is significantly limited compared to
what is possible in the trusted curator model, as
shown experimentally [15, 21] and theoretically [22].

The recent work of [34] also takes a two-stage ap-
proach: first, spend some part of the privacy budget
to learn a candidate head list and then use the re-
maining privacy budget to refine the probability esti-
mates of the candidates. However, that’s where the
similarities with Blender end, as [34] focuses en-
tirely on the local model (and thus has to use entirely
different algorithms from ours for each stage) and
addresses the problem of estimating probabilities of
queries, rather than the more challenging problem
of estimating probabilities of query-URL pairs.

Our contribution: Our work significantly im-
proves upon the known results by developing
application-specific local privatization algorithms
that work in combination with the trusted curator
model algorithms. Specifically, our insight of pro-
viding all users with differential privacy guarantees

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5

N
D
C
G

epsilon

10 25 50

(a) AOL

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5

N
D
C
G

epsilon

10 25 50 100 500

(b) Yandex

Figure 16: NDCG statistics for AOL and Yandex data sets as a
function of ε for select head list sizes.

but achieving it differently depending on whether
or not they trust the data curator, enables an effi-
cient privacy-preserving head list construction. The
subsequent usage of this head list in the algorithm
operating in the local model helps overcome one of
the main challenges to utility of privacy-preserving
algorithms in the local model [15]. Moreover, the
weighted aggregation of probability estimates ob-
tained from algorithms operating in the two models
(that explicitly factors in the amount of noise each
contributed), enabled remarkable utility gains com-
pared to usage of one algorithm’s estimates. As dis-
cussed in Section 4.2.2, we significantly outperform
the most recently introduced local algorithm of [34]
on metrics of utility in the search context.

6 Discussion

Operating in the hybrid model is most beneficial
utility-wise if the opt-in user records and client user
records come from the same distribution – i.e., the
two groups have fairly similar observed search be-
havior. If that is not the case, the differential privacy

guarantees still hold, but the accuracy of Blender’s
estimates may decrease.

Improvement in utility over what can be achieved
in the local model comes from two sources: the hy-
brid privacy model lets us develop a better algorithm
for client data collection and the analysis of algo-
rithms’ variances lets us smartly combine the results.

In practice, a system for local search or trend com-
putation would be run at regular intervals in order
to refresh the data as well as accommodate for users
being added to, removed from, or moving between
the opt-in and the client groups. We have focused on
the problem of obtaining local search or trend com-
putation results for a single execution of the system.
While one could simply re-run Blender at regular
intervals to obtain new results (with potentially dif-
ferent opt-in and client groups), this comes at a cost
to privacy. We leave the task of improving the tem-
poral aspect of Blender beyond what is achievable
with standard composition techniques of differential
privacy [11] to future work.

7 Conclusions

We proposed a hybrid privacy model and a blended
approach that operates within it that combines the
upsides of two common models of differential pri-
vacy: the local model and the trusted curator model.
Using local search as a motivating application, we
demonstrated that our proposed approach leads to
a significant improvement in terms of utility, bridg-
ing the gap between theory and practicality.

Future work: We plan to continue this work in two
directions: first, to address any systems and engi-
neering challenges to Blender’s adoption in prac-
tice, including those that arise due to data chang-
ing over time; and second, to develop algorithms for
other settings where the hybrid privacy model is ap-
propriate, thus facilitating adoption of differential
privacy in practice by minimizing the utility impact
of privacy-preserving data collection.

References

[1] Acquisti, A., Brandimarte, L., and Loewenstein, G.
Privacy and human behavior in the age of information.
Science 347, 6221 (2015), 509–514.

[2] Acquisti, A., and Grossklags, J. Privacy and ratio-
nality in individual decision making. IEEE Security and
Privacy 3, 1 (2005), 26–33.

[3] Baeza-Yates, R., Gionis, A., Junqueira, F., Mur-
dock, V., Plachouras, V., and Silvestri, F. The
impact of caching on search engines. In ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval (2007), pp. 183–190.

[4] Baeza-Yates, R., Gionis, A., Junqueira, F. P., Mur-
dock, V., Plachouras, V., and Silvestri, F. Design
trade-offs for search engine caching. ACM Transactions
on the Web 2, 4 (2008), 20.

[5] Bassily, R., and Smith, A. Local, private, efficient
protocols for succinct histograms. In Proceedings of the
Symposium on Theory of Computing (STOC) (2015),
pp. 127–135.

[6] Bhaskar, R., Laxman, S., Smith, A., and Thakurta,
A. Discovering frequent patterns in sensitive data.
In Proceedings of the International Conference on
Knowledge Discovery and Data Mining (KDD) (2010),
pp. 503–512.

[7] Dienlin, T., and Trepte, S. Is the privacy paradox
a relic of the past? an in-depth analysis of privacy atti-
tudes and privacy behaviors. European Journal of Social
Psychology 45, 3 (2015), 285–297.

[8] Duchi, J. C., Jordan, M. I., and Wainwright, M. J.
Local privacy and statistical minimax rates. In Sym-
posium on Foundations of Computer Science (FOCS)
(2013), pp. 429–438.

[9] Dwork, C. A firm foundation for private data analysis.
Communications of the ACM 54, 1 (2011), 86–95.

[10] Dwork, C., McSherry, F., Nissim, K., and Smith, A.
Calibrating noise to sensitivity in private data analysis.
In Theory of Cryptography Conference (TCC) (2006),
pp. 265–284.

[11] Dwork, C., and Roth, A. The algorithmic foundations
of differential privacy. Foundations and Trends in The-
oretical Computer Science 9, 3–4 (2014), 211–407.

[12] Dwork, C., Rothblum, G. N., and Vadhan, S. Boost-
ing and differential privacy. In Symposium on Founda-
tions of Computer Science (FOCS) (2010), pp. 51–60.

[13] Erlingsson, Ú., Pihur, V., and Korolova, A. RAP-
POR: Randomized aggregatable privacy-preserving or-
dinal response. In Proceedings of the Conference on
Computer and Communications Security (CCS) (2014),
pp. 1054–1067.

[14] Fan, L., Bonomi, L., Xiong, L., and Sunderam, V.
Monitoring web browsing behavior with differential pri-
vacy. In Proceedings of the 23rd International Confer-
ence on World Wide Web (WWW) (2014), pp. 177–188.

[15] Fanti, G., Pihur, V., and Erlingsson, Ú. Building
a rappor with the unknown: Privacy-preserving learn-
ing of associations and data dictionaries. Proceedings
on Privacy Enhancing Technologies (PETS), 3 (2016),
41–61.

[16] Götz, M., Machanavajjhala, A., Wang, G., Xiao,
X., and Gehrke, J. Publishing search logs–a compara-
tive study of privacy guarantees. IEEE Transactions on
Knowledge and Data Engineering 24, 3 (2012), 520.

[17] Greenberg, A. Apple’s differential privacy is about col-
lecting your data – but not your data. In Wired (June
13, 2016).

[18] Hsu, J., Gaboardi, M., Haeberlen, A., Khanna, S.,
Narayan, A., Pierce, B. C., and Roth, A. Differential
privacy: An economic method for choosing epsilon. In
27th IEEE Computer Security Foundations Symposium
(CSF) (2014), pp. 398–410.

[19] Hsu, J., Khanna, S., and Roth, A. Distributed pri-
vate heavy hitters. In International Colloquium on Au-
tomata, Languages, and Programming (ICALP) (2012),
pp. 461–472.

[20] Järvelin, K., and Kekäläinen, J. Cumulated gain-
based evaluation of ir techniques. Transactions on In-
formation Systems (TOIS) 20, 4 (2002), 422–446.

[21] Kairouz, P., Bonawitz, K., and Ramage, D. Discrete
distribution estimation under local privacy. In Proceed-
ings of the International Conference on Machine Learn-
ing (ICML) (2016), pp. 2436–2444.

[22] Kairouz, P., Oh, S., and Viswanath, P. Extremal
mechanisms for local differential privacy. In Advances in
Neural Information Processing Systems (NIPS) (2014),
pp. 2879–2887.

[23] Korolova, A. Privacy violations using microtargeted
ads: A case study. Journal of Privacy and Confidential-
ity 3, 1 (2011), 27–49.

[24] Korolova, A. Protecting Privacy when Mining and
Sharing User Data. PhD thesis, Stanford University,
2012.

[25] Korolova, A. Differential Privacy in iOS 10, Sep
13, 2016. https://twitter.com/korolova/status/

775801259504734208.

[26] Korolova, A., Kenthapadi, K., Mishra, N., and
Ntoulas, A. Releasing search queries and clicks pri-
vately. In Proceedings of the International Conference
on World Wide Web (WWW) (2009), pp. 171–180.

[27] Li, N., Qardaji, W., Su, D., and Cao, J. Privbasis:
frequent itemset mining with differential privacy. Pro-
ceedings of the VLDB Endowment 5, 11 (2012), 1340–
1351.

[28] Machanavajjhala, A., Kifer, D., Abowd, J.,
Gehrke, J., and Vilhuber, L. Privacy: Theory
meets practice on the map. In Proceedings of the 2008
IEEE 24th International Conference on Data Engineer-
ing (ICDE) (2008), pp. 277–286.

[29] Madden, M., and Rainie, L. Americans’ attitudes
about privacy, security and surveillance. Tech. rep., Pew
Research Center, 2015.

[30] McSherry, F., and Talwar, K. Mechanism design via
differential privacy. In Symposium on Foundations of
Computer Science (FOCS) (2007), pp. 94–103.

[31] Meng, X., Xu, Z., Chen, B., and Zhang, Y. Privacy-
preserving query log sharing based on prior n-word ag-
gregation. In IEEE Trustcom/BigDataSE/ISPA (2016),
pp. 722–729.

[32] Merriman, C. Microsoft reminds privacy-concerned
Windows 10 beta testers that they’re volunteers. In The
Inquirer, http: // www. theinquirer. net/ 2374302 (Oct
7, 2014).

[33] Narayanan, A., and Shmatikov, V. Robust de-
anonymization of large sparse datasets. In IEEE Sym-
posium on Security and Privacy (S&P) (2008), pp. 111–
125.

[34] Qin, Z., Yang, Y., Yu, T., Khalil, I., Xiao, X., and
Ren, K. Heavy hitter estimation over set-valued data
with local differential privacy. In Proceedings of the
Conference on Computer and Communications Security
(CCS) (2016), pp. 192–203.

[35] Shankland, S. How Google tricks itself to protect
chrome user privacy. In CNET (Oct 31, 2014).

[36] Silvestri, F. Mining query logs: Turning search usage
data into knowledge. Foundations and Trends in Infor-
mation Retrieval 4, 1–2 (2010), 1–174.

[37] Tang, J., Korolova, A., Bai, X., Wang, X., and
Wang, X. A white-hat view of Apple’s implementation
of differential privacy. arXiv preprint (2017).

[38] Valizadegan, H., Jin, R., Zhang, R., and Mao,
J. Learning to rank by optimizing NDCG measure.
In Advances in Neural Information Processing Systems
(NIPS) (2009), pp. 1883–1891.

[39] Wang, W., and Carreira-Perpinán, M. A. Projec-
tion onto the probability simplex: An efficient algorithm
with a simple proof, and an application. arXiv preprint
arXiv:1309.1541 (2013).

[40] Warner, S. L. Randomized response: A survey tech-
nique for eliminating evasive answer bias. Journal of the
American Statistical Association 60, 309 (1965), 63–69.

[41] White House Report. Consumer data privacy in a
networked world: A framework for protecting privacy
and promoting innovation in the global digital economy.
Journal of Privacy and Confidentiality 4, 2 (2012), 95–
142.

Appendices

A Client Data Algorithm

A.1 Privacy

Theorem 3. LocalAlg is (ε, δ)-differentially pri-
vate.

Proof. We show this by proving that each itera-
tion of the for loop in line 7 of LocalAlg is
(ε′, δ′)-differentially private, where ε′ = ε/mC and
δ′ = δ/mC . Since there are at most mC iterations of
this loop for each client, composition of differentially
private mechanisms [12] guarantees that LocalAlg
ensures (ε, δ)-differential privacy for each client.

Denote each iteration of the for loop in line 7
of LocalAlg by L; it takes as input a record
〈q, u〉 ∈ D, and returns a record, which we denote
L(〈q, u〉). If q is not in HL or u is not in HL[q],
then they immediately get transformed into a default
value (?) that is in the head list. Since L outputs
only values that exist in the head list, to confirm
differential privacy we need to prove that for any ar-
bitrary neighboring data sets 〈q, u〉 and 〈q′, u′〉,
Pr
[
L(〈q, u〉) ∈ Y

]
≤ eε′ Pr

[
L(〈q′, u′〉) ∈ Y

]
+δ′ holds

for all sets of head list records Y .
Whenever k = 1 or kq = 1, the only query (or

URL for a specific query) is ?, which will be out-
put with probability 1. Thus, differential privacy
trivially holds, since the reported values then do
not rely on the client’s data. Thus, we’ll assume
k ≥ 2 and kq ≥ 2. Note that there is a single de-
cision point where it is determined whether q will
be reported truthfully or not. Thus, we can split
the privacy analysis into two parts: 1) Usage of

https://twitter.com/korolova/status/775801259504734208
https://twitter.com/korolova/status/775801259504734208
http://www.theinquirer.net/2374302

the fC fraction of the privacy budget to report a
query, and 2) Usage of the remainder of the pri-
vacy budget to report a URL (given the reported
query). This decomposes a simultaneous two-item
(ε′, δ′) reporting problem into two single-item re-
porting problems with (ε′Q, δ

′
Q) and (ε′U , δ

′
U) respec-

tively, where ε′Q = fε′, δ′Q = fδ′, ε′U = (1 − fC)ε′,
and δ′U = (1− fC)δ′.

1. Privacy of Query Reporting:
Consider the query-reporting case first. Overload-

ing our use of L, let L(q) be the portion of L that
makes use of q. We first ensure that

Pr[L(q) = qHL] ≤ exp(ε′Q) Pr[L(q′) = qHL] +
δ′Q

2
(1)

holds for all q, q′, and qHL ∈ HL. This trivially
holds when qHL = q = q′ or qHL 6∈ {q, q′}. The
remaining scenarios to consider are: 1) q 6= qHL, q

′ =
qHL and 2) q = qHL, q

′ 6= qHL. By the design of the
algorithm, Pr[L(qHL) = qHL] = t and Pr[L(q̄HL) =
qHL] = (1−t)(1

k−1), where q̄HL represents any query

not equal to qHL. With t =
exp(ε′Q)+(δ′Q/2)(k−1)

exp(ε′Q)+k−1 , it is

simple to verify that inequality (1) holds.
Consider an arbitrary set of head list queries Y .

Pr[L(q) ∈ Y] =
∑

qHL∈Y
Pr[L(q) = qHL]

=
∑

qHL∈Y \{q,q′}
Pr[L(q) = qHL] +

∑
qHL∈Y ∩{q,q′}

Pr[L(q) = qHL]

=
∑

qHL∈Y \{q,q′}
Pr[L(q′) = qHL] +

∑
qHL∈Y ∩q,q′

Pr[L(q) = qHL] (2)

≤
∑

qHL∈Y \{q,q′}
Pr[L(q′) = qHL] +

∑
qHL∈Y ∩{q,q′}

(
eε
′
Q Pr[L(q′) = qHL] +

δ′Q

2

)
(3)

≤ eε
′
Q

∑
qHL∈Y

Pr[L(q′) = qHL] + 2 ·
δ′Q

2

= eε
′
Q Pr[L(q′) ∈ Y] + δ′Q,

Equality (2) stems from the fact that the probability
of reporting a false query is independent of the user’s
true query. The inequality (3) is a direct application
of inequality (1). Thus, L is (ε′Q, δ

′
Q)-differentially

private for query-reporting.
2. Privacy of URL Reporting:

With tq defined as tq =
exp(ε′U)+0.5δ′U (kq−1)

exp(ε′U)+kq−1 ,

an analogous argument shows that the (ε′U , δ
′
U)-

differential privacy constraints hold if the original
q is kept. On the other hand, if it is replaced with
a random query, then they trivially hold as the al-
gorithm reports a random element in the URL list
of the reported query, without taking into consider-
ation the client’s true URL u.

By composition [12], each of the at most mC itera-
tions of L is (ε′Q+ε′U , δ

′
Q+δ′U) = (ε′, δ′)-differentially

private.

A.2 Denoising

Observation 1. p̂C gives the unbiased estimate
of record and query probabilities under Estimate-
ClientProbabilities.

Proof. Reporting records is a two-stage process
(first, decide which query to report, then report
a record); similarly, denoising is also done in two
stages.

Denoising of query probability estimates: Let
rC,q denote the probability that the algorithm has
received query q as a report, and let pq be the true
probability of a user having query q. We want to
learn pq based on rC,q. By the design of our al-
gorithm, rC,q = t · pq +

∑
q′ 6=q pq′(1 − t) 1

k−1 =

t · pq + 1−t
k−1

∑
q′ 6=q pq′ = t · pq + 1−t

k−1 (1− pq).
Solving for pq in terms of rC,q yields pq =

rC,q− 1−t
k−1

t− 1−t
k−1

. Using the obtained data for the query r̂C,q,

we estimate pC,q as p̂C,q =
r̂C,q− 1−t

k−1

t− 1−t
k−1

.

Denoising of record probability estimates:
Analogously, denote by rC,〈q,u〉 the probability that
the algorithm has received a record 〈q, u〉 as a report,
and recall p〈q,u〉 is the record’s true probability in the

data set. Then rC,〈q,u〉 = t · tq · p〈q,u〉+
(
t

1−tq
kq−1

)
(pq −

p〈q,u〉) +
(

1−t
k−1

1
kq

)
(1 − pq), recalling from the algo-

rithm that kq is the number of URLs associated with
query q and tq is the probability of truthfully report-
ing u given that query q was reported. Solving for

p〈q,u〉 yields p〈q,u〉 =
rC,〈q,u〉−

(
t
1−tq
kq−1pq+

(1−t)(1−pq)

(k−1)kq

)
t(tq−

1−tq
kq−1)

.

Using the obtained data for the empirical re-
port estimate r̂C,〈q,u〉 together with the query es-
timate p̂C,q, we estimate p〈q,u〉 as p̂C,〈q,u〉 =

r̂C,〈q,u〉−
(
t
1−tq
kq−1 p̂C,q+

(1−t)(1−p̂C,q)

(k−1)kq

)
t(tq−

1−tq
kq−1)

.

B Blending

Theorem 4. When mO = 1 the unbi-
ased variance estimate for EstimateOpt-
inProbabilities can be computed as:

σ̂2
O,〈q,u〉 =

|DT |
|DT |−1

(
p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT |
+ 2

(
bT
|DT |

)2)
.

Proof. Given the head list, the distribution of Es-
timateOptinProbabilities’ estimate for a record
〈q, u〉 is given by rO,〈q,u〉 = p〈q,u〉+

Y
|DT | , where Y ∼

Laplace(bT) where bT is the scale parameter and
|DT | is the total number of records from the opt-in
users used to estimate probabilities. The empirical

estimator for rO,〈q,u〉 is r̂O,〈q,u〉 = 1
|DT |

∑|DT |
j=1 Xj +

Y , where Xj ∼ Bernoulli(p〈q,u〉) is the random vari-
able indicating whether report j was record 〈q, u〉.

The expectation of this estimator is given by
E[r̂O,〈q,u〉] = p〈q,u〉. Thus, r̂O,〈q,u〉 is an unbiased
estimator for p〈q,u〉. We denote p̂O,〈q,u〉 = r̂O,〈q,u〉 to
explicitly reference it as the estimator of p〈q,u〉. The
variance for this estimator is

σ2
O,〈q,u〉 = V [p̂O,〈q,u〉] = V

[1

|DT |
(|DT |∑
j=1

Xj + Y
)]

=
1

|DT |2
(
V
[|DT |∑
j=1

Xj
]

+ V [Y]
)

(4)

=
1

|DT |2
(|DT |∑
j=1

V [Xj] + V [Y]
)

(5)

=
1

|DT |2
(
|DT | · p〈q,u〉(1− p〈q,u〉)

)
+ 2
(bT

|DT |

)2
=
p〈q,u〉(1− p〈q,u〉)

|DT |
+ 2
(bT

|DT |

)2
.

Equality 4 comes from the independence between
Y and all Xj . Equality 5 relies on an assumption
of independence between Xj , Xk for all j 6= k (i.e.,
the iid assumption discussed prior to the theorem
statements in Section 3.3).

To actually compute this variance, we need to
use the data in place of the unknown p〈q,u〉. Using

p̂O,〈q,u〉 directly in place of p〈q,u〉 requires a |DT |
|DT |−1

factor correction (known as“Bessel’s correction5”) to
generate an unbiased estimate. Thus, the variance of
each opt-in record probability estimate is: σ̂2

O,〈q,u〉 =

|DT |
|DT |−1

(
p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT |
+ 2

(
bT
|DT |

)2)
.

Note that in line 15 of EstimateOptinProba-
bilities, the use of this sample variance expression
in re-computing σ̂2

O,〈?,?〉 is not statistically valid, so
our computation of p̂O,〈?,?〉 and p̂〈?,?〉 is sub-optimal.
Despite that, our overall utility, which does not in-
clude ?, is good (see Section 4).

Theorem 5. When mC = 1 the un-
biased variance estimate for Estimate-
ClientProbabilities can be computed as:
σ̂2
C,〈q,u〉 = 1

t2
(
tq−

1−tq
kq−1

)2 ·(r̂C,〈q,u〉(1−r̂C,〈q,u〉)

|DC |−1
+
(

1−t
(k−1)kq

−

t−ttq
kq−1

)2
σ̂2
C,q +

2|DC |
|DC |−1

(
1−t

(k−1)kq
− t−ttq

kq−1

)(
k−2+t
kt−1

)
r̂C,〈q,u〉

)
.

Proof. From Section 3.2 on denoising, the distribu-
tion of the reported query q from the client mecha-
nism is given by rC,q = t · pq + 1−t

k−1 (1 − pq), and
so the true probability of query q is distributed

as pq =
rC,q− 1−t

k−1

t− 1−t
k−1

. The empirical estimator for

pq is p̂C,q =
r̂C,q− 1−t

k−1

t− 1−t
k−1

, where r̂C,q is the empiri-

cal estimator of rC,q defined explicitly as r̂C,q =
1
|DC |

∑|DC |
j=1 Xj , where Xj ∼ Bernoulli(rC,q) is the

random variable indicating whether report j was

query q and |DC | is the total number of records from
the client users.

The variance of r̂C,q is

V [r̂C,q] = V
[1

|DC |

|DC |∑
j=1

Xj

]

=
(1

|DC |

)2 |DC |∑
j=1

V [Xj] (6)

=
(1

|DC |
)2(|DC | · rC,q(1− rC,q)) =

rC,q(1− rC,q)
|DC |

,

where equality 6 relies on an assumption of indepen-
dence between Xj , Xk for all j 6= k (i.e., the iid as-
sumption discussed prior to the theorem statements
in Section 3.3).

Then, the variance of p̂C,q is

σ2
C,q = V [p̂C,q] = V

[r̂C,q − 1−t
k−1

t− 1−t
k−1

]
=

rC,q(1− rC,q)
|DC |

(
t− 1−t

k−1

)2 .
To actually compute this variance, we need to

use the data in place of the unknown rC,q. Us-
ing r̂C,q directly in place of rC,q requires including

Bessel’s |DC |
|DC |−1 factor correction to yield an unbi-

ased estimate. Thus, the variance of the query prob-
ability estimates by the client algorithm is: σ̂2

C,q =(
1

t− 1−t
k−1

)2
r̂C,q(1−r̂C,q)

|DC |−1
.

Using a similar procedure for records
we obtain the unbiased variance es-
timate as σ̂2

C,〈q,u〉 = 1

t2
(
tq−

1−tq
kq−1

)2 ·(
r̂C,〈q,u〉(1−r̂C,〈q,u〉)

|DC |−1
+

(
1−t

(k−1)kq
− t−ttq

kq−1

)2
σ̂2
C,q +

2|DC |
|DC |−1

(
1−t

(k−1)kq
− t−ttq

kq−1

)(
k−2+t
kt−1

)
r̂C,〈q,u〉

)
.

Theorem 6. If σ̂2
O,〈q,u〉 and σ̂2

C,〈q,u〉 are sample
variances of p̂O,〈q,u〉 and p̂C,〈q,u〉 respectively, then

w〈q,u〉 =
σ̂2
C,〈q,u〉

σ̂2
O,〈q,u〉+σ̂

2
C,〈q,u〉

is the sample variance op-

timal weighting.

Proof. With the variance estimates for each algo-
rithm fully computed, a blended estimate of p〈q,u〉 is
given by p̂〈q,u〉 = w〈q,u〉·p̂O,〈q,u〉+(1−w〈q,u〉)·p̂C,〈q,u〉,
which has sample variance σ̂2

〈q,u〉 = w2
〈q,u〉 · σ̂

2
O,〈q,u〉+

(1−w〈q,u〉)2 · σ̂2
C,〈q,u〉. Minimizing σ̂2

〈q,u〉 with respect
to w〈q,u〉 yields the desired.

Notes

1https://www.mozilla.org/en-US/privacy/firefox/
2https://www.chromium.org/getting-involved/

dev-channel
3https://www.google.com/trends/
4https://www.kaggle.com/c/

yandex-personalized-web-search-challenge/data
5https://en.wikipedia.org/wiki/Bessel’s_correction

https://www.mozilla.org/en-US/privacy/firefox/
https://www.chromium.org/getting-involved/dev-channel
https://www.chromium.org/getting-involved/dev-channel
https://www.google.com/trends/
https://www.kaggle.com/c/yandex-personalized-web-search-challenge/data
https://www.kaggle.com/c/yandex-personalized-web-search-challenge/data
https://en.wikipedia.org/wiki/Bessel's_correction

	Introduction
	Differential Privacy and Curator Models
	Applications
	Contributions

	System Overview
	Outline of Our Approach
	Overview of Blender Sub-Algorithms

	Technical Detail Summary
	Opt-in Data Algorithms
	Client Data Algorithms
	Blending

	Experimental Evaluation
	Experimental Setup
	Experimental Results
	Algorithmic and Parameter Choices
	Utility Comparison to Alternatives
	Robustness

	Related Work
	Discussion
	Conclusions
	Client Data Algorithm
	Privacy
	Denoising

	Blending

